1	II	III	IV	V	VI
Uniform fields or nonlinear fields that are drawn.	Point charge q superposition	Sphere with charge Q and sphere within a sphere	Arc with Point P at center of the arc	Hoop with P offset along an axis passing thru center	Cylinder
E given (or V is given) If V is given instead of E you can use the equation $\mathrm{E}=-\frac{d V}{d r}$ to solve for E .	All four of th $\oint \vec{B} \cdot \overrightarrow{d A}=$ Use $E=k \frac{Q}{r^{2}}$ to find All the individual E_{i}, vectors due to each charge q_{i} acting a point P. Add all the individual E_{i} vectors to find the total electric field E.	ese problems use the same $\frac{\epsilon_{e n c}}{\epsilon_{0}} \quad E\left(4 \pi r^{2}\right)=\frac{Q_{e n c}}{\epsilon_{0}}$ Use $E=k \frac{Q_{\text {enc }}}{r^{2} G S}$ to find E at various points (inside the sphere $r<R$, on its surface $r=R$, and outside the sphere $r>R$).	$\begin{aligned} & E=k \frac{Q}{r^{2}} \\ & d E=k \frac{d q}{r^{2}} \\ & \int d E_{x}=\int k \frac{d q}{r^{2}} \cos \theta \\ & \text { Density } \\ & \lambda=\frac{Q}{L}=\frac{d q}{d l} \\ & E_{x}=\int \frac{k Q}{r^{2} L} d l \cos \theta \\ & r=R \\ & \text { Arc length } d l=R d \theta \\ & E_{x}=\int \frac{k Q}{R L} \cos \theta d \theta \\ & E_{x}=\frac{k Q}{R L} \int_{\theta_{0}}^{\theta} \cos \theta d \theta \\ & E_{x} \\ & =\frac{k Q}{R L}\left(\sin \theta_{b}-\sin \theta_{a}\right) \end{aligned}$	$\begin{aligned} & \text { ss's Law } \\ & =\frac{1}{4 \pi} \epsilon_{0} \\ & E=k \frac{Q}{r^{2}} \\ & d E=k \frac{d q}{r^{2}} \\ & \int d E_{x} \\ & =\int k \frac{d q}{r^{2}} \cos \theta \end{aligned}$	$\begin{gathered} \oint \vec{B} \cdot \overrightarrow{d A}=\frac{Q_{e n c}}{\epsilon_{0}} \\ E(2 \pi r l)=\frac{Q_{e n c}}{\epsilon_{0}} \\ E=\frac{Q_{e n c}}{2 \pi r l \epsilon_{0}} \\ \lambda=\frac{Q}{L} \\ E=\frac{\lambda}{2 \pi r \epsilon_{0}} \end{gathered}$
Usually these problems involve uniform fields or when non-uniform they allow you to find average E between two equal potential line values. $E=\frac{V}{d}$	If a new charge appears at point P, then you can find the force on the new charge due to the field E. $F_{E}=q_{n e w} E_{t o t a l}$	$r<R$ in an insulator $\frac{Q_{e n c}}{V_{\text {enc }}}=\frac{Q_{\text {total }}}{V_{\text {total }}}$ $\frac{Q_{e n c}}{\left(\frac{4}{3}\right) \pi r^{3}}=\frac{Q_{t o t a l}}{\left(\frac{4}{3}\right) \pi r^{3}}$		$\begin{gathered} E_{x}=\frac{k}{r^{2}} \cos \theta \int d q \\ E_{x}=\frac{k Q}{r^{2}} \cos \theta \\ \cos \theta=\frac{x}{r} \text { and } r= \\ \sqrt{R^{2}+x^{2}} \\ E_{x}=\frac{k Q x}{\left(R^{2}+x^{2}\right)^{3 / 2}} \end{gathered}$	$r<R$ in an insulator $\begin{aligned} & \frac{Q_{e n c}}{V_{e n c}}=\frac{Q_{\text {total }}}{V_{\text {total }}} \\ & \quad \frac{Q_{e n c}}{\pi r^{2} L}=\frac{Q_{\text {total }}}{\pi r^{2} L} \end{aligned}$

$\begin{gathered} \mathrm{E}=-\frac{d V}{d r} \\ V=-\int^{\text {Usually these }} \\ \text { problems } \end{gathered}$ involve uniform fields. $V=E d$	$\begin{aligned} & V=k \Sigma \frac{q_{i}}{r_{i}} \\ & \begin{aligned} V_{\text {total }}=k\left(\frac{q_{1}}{r_{1}}\right. & +\frac{q_{2}}{r_{2}} \\ & \left.+\frac{q_{3}}{r_{3}}+. .\right) \end{aligned} \end{aligned}$ If a new charge appears at point P, then you can find the energy on the new charge due to the total potential V. $U_{E}=q_{n e w} V_{\text {total }}$ If released the charge is released you can find its speed $\begin{aligned} & q_{\text {new }} V_{\text {total }} \\ & =\frac{1}{2} m_{\text {new }} v_{n e w}^{2} \end{aligned}$	Change in potential moving from point a to b $\begin{aligned} & \Delta V=-\int_{a}^{b} E d r \\ & \Delta V=-\int_{a}^{b}\left(k \frac{Q}{r^{2}}\right) d r \\ & V=-k Q \int_{a}^{b}\left(\frac{1}{r^{2}}\right) d r \\ & V=k \frac{Q_{e n c}}{r}\left\{\begin{array}{l} b \\ a \end{array}\right. \\ & V=k Q\left(\frac{1}{b}-\frac{1}{a}\right) \end{aligned}$ (If $a=\infty$ and $b=R$) $V=k \frac{Q}{R}$	The arc consists of many charged spheres (protons or electrons) to total. V $=k\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}+\frac{q_{3}}{r_{3}}+. .\right)$ All points are at the same distance r, and $\begin{aligned} R & =r \\ V & =k \frac{Q}{R} \end{aligned}$	The hoop consists of many charged spheres (protons or electrons) to total. V $\begin{aligned} & =k\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}\right. \\ & \left.+\frac{q_{3}}{r_{3}}+. .\right) \end{aligned}$ $V=k \frac{Q}{R}$ All points are at the same distance r, where $\begin{aligned} r & =\sqrt{R^{2}+x^{2}} \\ V & =k \frac{Q}{\sqrt{R^{2}+x^{2}}} \end{aligned}$	Change in potential moving from point a to $\begin{aligned} & V=-\int_{a}^{b} E d r \\ & V=-\int_{a}^{b}\left(\frac{\lambda}{2 \pi r \epsilon_{0}}\right) d r \\ & V \\ & =-\frac{\lambda}{2 \pi r \epsilon_{0}} \int_{a}^{b}\left(\frac{1}{r}\right) d r \\ & V=-\frac{\lambda}{2 \pi \epsilon_{0}}(\operatorname{In} b \\ & V=-\frac{\lambda}{2 \pi \epsilon_{0}} \operatorname{In} \frac{b}{a} \end{aligned}$
2005-1	2000-2, 2001-1, 2006-1	$\begin{gathered} \text { 1996-1, 1997-2, 1998-1, } \\ \text { 1999-1, 2003-1, 2004-1, } \\ 2007-2,2008-1 \end{gathered}$	2002-1	1999-3	1998-1, 2000-3
I	II	III	IV	V	VI
Fixed Magnet	Wires and Superposition	Cylinder with current I Cylinder within a cylinder	Arc with Point P at center of the arc	Hoop with P offset along an axis passing thru center	Solenoid
	These two problems use Ampere's Law $\begin{aligned} & \oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I_{e n c} \\ & \vec{B} \oint \overrightarrow{d l}=\mu_{0} I_{e n c} \end{aligned}$ In Ampere's Law $d l$ is the length of the magnetic field which circles the wire, with a sum of $\oint \overrightarrow{d l}=2 \pi r$ Lower case r is used since we are measuring the to		These two problems use Biot-Savart$\begin{aligned} & \overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d l} \times \hat{r}}{r^{2}} \\ & \overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d l}}{r^{2}} \sin \theta \end{aligned}$		$\begin{gathered} B_{s}=\mu_{0} n I \\ n=\frac{N}{L} \end{gathered}$

