

AP Physics C: Mechanics:: Formula Sheet

I	II	III	IV	V	VI
Uniform fields or	Point charge q	Sphere with charge Q	Arc with Point P at	Hoop with P offset	Cylinder
nonlinear	superposition	and sphere within a	center of the arc	along an axis passing	
fields that are drawn.		sphere		thru center	
E given (or V is given)	All four of th	$\oint \vec{B} \cdot \vec{dA} = \frac{Q_{enc}}{\epsilon_0}$			
If V is given instead of	$\oint \vec{B} \cdot \vec{dA} = \frac{d}{dA}$	$\frac{Q_{enc}}{\epsilon_0} \qquad E(4\pi r^2) = \frac{Q_{enc}}{\epsilon_0}$	$E = \frac{1}{4\pi\epsilon_0} \frac{Q_{enc}}{\epsilon_0} \qquad k$	$=\frac{1}{4\pi}\epsilon_0$	$\int D \ an = \epsilon_0$
E	Use $E = k \frac{Q}{r^2}$ to find	Use $E = k \frac{Q_{enc}}{r_{GS}^2}$ to find	$E = \frac{1}{4\pi\epsilon_0} \frac{Q_{enc}}{\epsilon_0} \qquad k$ $E = k \frac{Q}{r^2}$ $dE = k \frac{dq}{r^2}$	$E = k \frac{Q}{r^2}$	$E(2\pi rl) = \frac{Q_{enc}}{\epsilon_0}$
	All the individual E_i ,	E at various points (inside	dq	dq	$E(2\pi i) = \epsilon_0$
you can use the	vectors due to each	the sphere <i>r < R ,</i> on its	$dE = k \frac{1}{r^2}$	$dE = k \frac{dq}{r^2}$	$E = \frac{Q_{enc}}{2\pi r l \epsilon_0}$
equation	charge q_i acting a	surface <i>r</i> = <i>R</i> , and outside	$\int dE_x = \int k \frac{dq}{r^2} \cos \theta$		$2\pi r l \epsilon_0$
$\mathbf{E} = -\frac{dV}{dr}$	point P. Add all	the sphere <i>r > R</i>).	$\int aE_x = \int \kappa \frac{1}{r^2} \cos \theta$	$\int dE_x$	0
dr	the individual			J ~	$\lambda = \frac{Q}{2}$
to solve for E .	Γ , we show to find the		Density	$=\int k \frac{dq}{r^2} \cos \theta$	$\lambda = \frac{Q}{L}$ $E = \frac{\lambda}{2\pi r\epsilon_0}$
LU SOIVE IOI E.	E_i vectors to find the total electric field <i>E</i> .		$\lambda = \frac{Q}{I} = \frac{dq}{dI}$	$\int r^2 r^2$	$E = \frac{\pi}{2\pi m_c}$
Usually these	total electric field E.	<i>r</i> < <i>R</i> in an insulator	L dl		$2\pi r \epsilon_0$
problems	If a new charge appears at		c kO	$E_x = \frac{k}{r^2} \cos \theta \int dq$	<i>r</i> < <i>R</i> in an insulator
involve uniform fields	point P, then you can find	$\frac{qenc}{V_{enc}} = \frac{qtotal}{V_{total}}$	$E_{x} = \int \frac{kQ}{r^{2}L} dl \cos \theta$	r^2 J	
or	the force on the new	$\overline{V_{enc}} = \overline{V_{total}}$	r = R	kO	O_{enc} O_{total}
when non-uniform	charge	O _{enc} O _{total}	Arc length $dl = Rd\theta$	$E_x = \frac{kQ}{r^2} \cos \theta$	$\frac{Q_{enc}}{V_{enc}} = \frac{Q_{total}}{V_{total}}$
they	due to the field E .	$\frac{Q_{enc}}{\left(\frac{4}{3}\right)\pi r^3} = \frac{Q_{total}}{\left(\frac{4}{3}\right)\pi r^3}$		I	'enc' total
allow you to find		$\left(\frac{3}{3}\right)\pi r^{3}$ $\left(\frac{3}{3}\right)\pi r^{3}$	r kO	$\cos \theta = \frac{x}{2}$ and $r =$	Q_{enc} Q_{total}
average	$F_E = q_{new} E_{total}$		$E_x = \int \frac{kQ}{RL} \cos\theta d\theta$	$\cos \theta = \frac{x}{r} \text{ and } r = \sqrt{R^2 + x^2}$	$\frac{Q_{enc}}{\pi r^2 L} = \frac{Q_{total}}{\pi r^2 L}$
E between two equal	E Thew total		JIL	$\sqrt{R^2 + x^2}$	
potential line values.			$E_{\chi} = \frac{kQ}{RL} \int_{\theta_{0}}^{\theta} \cos\theta \ d\theta$		
F = V			$h L J_{\theta_0}$	$E_x = \frac{kQx}{(R^2 + x^2)^{3/2}}$	
$E = \frac{1}{d}$			F	$(R^2 + x^2)^{3/2}$	
			kO		
			$=\frac{\pi c}{RL}(\sin\theta_b - \sin\theta_a)$		
			$E_x = \frac{kQ}{RL} (\sin \theta_b - \sin \theta_a)$		

$E = -\frac{dV}{dr}$ $V = -\int E dr$ Usually these problems involve uniform fields. V = Ed	$V = k\Sigma \frac{q_i}{r_i}$ $V_{total} = k \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + \right)$ If a new charge appears at point P, then you can find the energy on the new charge due to the total potential V. $U_E = q_{new}V_{total}$ If released the charge is released you can find its speed $q_{new}V_{total}$ $= \frac{1}{2}m_{new}v_{new}^2$	Change in potential moving from point a to b $\Delta V = -\int_{a}^{b} E \ dr$ $\Delta V = -\int_{a}^{b} \left(k\frac{Q}{r^{2}}\right) \ dr$ $V = -kQ \int_{a}^{b} \left(\frac{1}{r^{2}}\right) \ dr$ $V = k\frac{Q_{enc}}{r} \left\{\frac{b}{a}\right\}$ $V = kQ \left(\frac{1}{b} - \frac{1}{a}\right)$ (If $a = \infty$ and $b = R$) $V = k\frac{Q}{R}$	The arc consists of many charged spheres (protons or electrons) to total. $V = k \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} +\right)$ All points are at the same distance r, and R = r. $V = k \frac{Q}{R}$	The hoop consists of many charged spheres (protons or electrons) to total. $V = k \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} +\right)$ $V = k \frac{Q}{R}$ All points are at the same distance r, where $r = \sqrt{R^2 + x^2}$ $V = k \frac{Q}{\sqrt{R^2 + x^2}}$	Change in potential moving from point <i>a</i> to b $V = -\int_{a}^{b} E dr$ $V = -\int_{a}^{b} \left(\frac{\lambda}{2\pi r\epsilon_{0}}\right) dr$ V $= -\frac{\lambda}{2\pi r\epsilon_{0}} \int_{a}^{b} \left(\frac{1}{r}\right) dr$ $V = -\frac{\lambda}{2\pi \epsilon_{0}} (\ln b)$ $-\ln a$ $V = -\frac{\lambda}{2\pi \epsilon_{0}} \ln \frac{b}{a}$
2005-1	2000-2, 2001-1, 2006-1	1996-1, 1997-2, 1998-1,	2002-1	1999-3	1998-1, 2000-3
		1999-1, 2003-1, 2004-1, 2007-2, 2008-1			
I	II	III	IV	v	VI
Fixed Magnet	Wires and Superposition	Cylinder with current <i>I</i> Cylinder within a cylinder	Arc with Point P at center of the arc	Hoop with P offset along an axis passing thru center	Solenoid
	These two problems use Ampere's Law $\oint \vec{B} \cdot \vec{dl} = \mu_0 I_{enc}$ $\vec{B} \oint \vec{dl} = \mu_0 I_{enc}$ In Ampere's Law dl is the length of the magnetic field which circles the wire, with a sum of $\oint \vec{dl} = 2\pi r$ Lower case r is used since we are measuring the to		These two problems use Biot-Savart		
			$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \overrightarrow{dl} \times \hat{r}}{r^2}$		
					$B_s = \mu_0 n I$
			$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \overrightarrow{dl}}{r^2} \sin \theta$		$n = \frac{N}{L}$

	field.		This theta is the angle between l and r and is		where <i>N</i> is the number
B uniform and given	$B(2\pi r) = \mu_0 I_{enc}$		usually 90°. The sin of 90° is 1, eliminating this		of loops in the solenoid
			theta.		and <i>L</i> is the solenoid's
If a moving charge	$B = \frac{\mu_0}{2\pi} \frac{I_{enc}}{r_{cs}}$		$\int \vec{dB} = \int \frac{\mu_0}{4\pi} \frac{Idl}{r^2}$		length.
passes	$D = 2\pi r_{GS}$				
through the fixed field			$B = \frac{\mu_0}{4\pi} \frac{Idl}{r^2}$		$B_s = \frac{\mu_0 N}{I} I$
$F_B = qvB$			$D = 4\pi r^2$		L
					The trick way to find n
If a wire passes	Use	Use	$B = \frac{\mu_0}{4\pi r^2} \int dl$	x-components are	is to use only a single
through	$B = \frac{\mu_0}{2\pi} \frac{I_{enc}}{r_{cs}}$	$B = \frac{\mu_0}{2\pi} \frac{I_{enc}}{r_{GS}}$	$-4\pi r^2 \int d\pi$	needed, introducing a	loop of whole solenoid.
the fixed field	$= 2\pi r_{GS}$	$= 2\pi r_{GS}$		second theta.	
			In Biot-Savart <i>dl</i> is the	Magnetism's	N = 1
$F_B = ILB$	to find all the B vectors	to find <i>B</i> at various points	length of the wire. This is	geometry is odd,	
	due to	Point B	the arc length	since it acts at 90°.	<i>L</i> = diameter of the
	each wire carrying a		C		wirer.
	current	$\frac{I_{enc}}{V_{enc}} = \frac{I_{total}}{V_{total}}$	$\oint dl = R\theta$	$dB_x = \frac{\mu_0}{4\pi} \frac{Idl}{r^2} \sin \theta$	1
	I a distance r from a point	V _{enc} V _{total}	J	1/1 /	$B_s = \mu_0 \frac{1}{dia} I$
	P. Add all the <i>B</i> vectors to	I I.	Use upper case R when	$B_x = \frac{\mu_0}{4\pi} \frac{I}{r^2} \sin \theta \int dl$	^s '° dia
	find the total <i>B</i> . If a	$\frac{I_{enc}}{\pi r^2 L} = \frac{I_{total}}{\pi r^2 L}$	working with objects.	n $4\pi r^{2}$ J	u.I
	moving	$\pi r^{-}L$ $\pi r^{-}L$	However, in this problem	In Biot-Savart dl is	$B_s = \frac{\mu_0 I}{dia}$
	charge passes through				ala
	point P		R = r , so	the length of the wire. This is the arc	
			$\oint dl = r\theta$		
	$F_B = qvB$			length C	
			$B = \frac{\mu_0}{4\pi} \frac{I}{r^2} r\theta$	$\oint dl = 2\pi R$	
	If a wire passes through		176 1	J Use upper case R	
	point P		$B = \frac{\mu_0}{4\pi} \frac{I}{r} \theta$	when working with	
			110 1	objects.	
	$F_B = ILB$		Where theta is the angle	B_x	
			of the arc measured in	_	
			radians. Note: this will	$=\frac{\mu_0}{4\pi}\frac{I}{r^2}\sin\theta(2\pi R)$	
			also solve for an entire	1111	
			hoop where theta is 2π	$B_x = \frac{\mu_0}{2} \frac{IR}{r^2} \sin \theta$	
			radians.	$B_x = \frac{1}{2} \frac{1}{r^2} \sin \theta$	
		2000-3		2008-3	1996-3, 2005-3